Guanine nucleotide-induced Ca²⁺ release in permeabilized murine thymocytes

Teruko Ueda, Yoichi Ichikawa and Iwao Kusaka*

Department of Microbiology, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-04 and *Institute of Applied Microbiology, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 120, Japan

Received 12 April 1988

GTP and IP₃ induced Ca²⁺ release from an internal store in permeabilized murine thymocytes loaded with Ca²⁺ by ATP. Ca²⁺ release was dependent on the concentration of GTP: half-maximal release with 0.5 µM and maximal release with 10 µM. The GTP effect was completely abolished by 100 µM GTP₂S, GMPPNP and UTP. None of the other nucleotides used except ITP induced Ca²⁺ release. When GTP was added after the effect of IP₃ had virtually subsided, and vice versa, further Ca²⁺ release occurred, which led to the conclusion that the mechanism of GTP-mediated Ca²⁺ release may be different from that of IP₃-mediated release.

Ca2+ release; GTP; Thymocyte; Inositol trisphosphate

1. INTRODUCTION

Calcium has been of major importance in the study of signal transduction mechanisms [1,2]. In particular, IP3-induced Ca release from the endoplasmic reticulum has attracted much attention in recent years. On the other hand, in earlier studies, Dawson [3] observed that GTP increased the effectiveness of IP₃ in inducing Ca²⁺ release from rat liver microsomes. Recently, one of the present authors reported that GTP promotes substantial Ca2+ release without the addition of exogenous IP₃ in permeabilized N1E-115 cells [4,5]. Using the same cell line, Chueh and Gill [6] reported that IP3 and GTP function via distinct mechanisms to activate Ca2+ release. The same observations were also reported in several other cell systems [7–9]. In the immune systems, Ca^{2+} is

Correspondence address: T. Ueda, Department of Microbiology, Saitama Medical School, Moroyama, Irumagun, Saitama 350-04, Japan

Abbreviations: IP₃, inositol 1,4,5-trisphosphate; PEG, polyethylene glycol; GMPPNP, guanosine 5'- $(\beta,\gamma$ -imido)triphosphate; GTP γ S, guanosine 5'- $(\gamma$ -thio)triphosphate

also found to be involved in several important cellular activities [10,11]. Stimulation of Ca²⁺ movement in antigenic or mitogenic induction of cell proliferation of lymphocytes was reported by several authors, and IP₃-induced Ca²⁺ release was also recently found in human lymphocytes [12]. However, the mechanism of GTP-mediated Ca²⁺ release in the immune system has not yet been studied. We describe here an investigation of the mechanism of GTP-mediated Ca²⁺ release in permeabilized murine thymocytes, which are known to be precursors of T lymphocytes.

2. MATERIALS AND METHODS

2.1. Materials

All reagents were purchased from Sigma. ⁴⁵Ca (3.61 Ci/mmol) was obtained from New England Nuclear, mice from Saitama Laboratory Animals and glass fiber filters were the Whatman GF/C type.

2.2. Preparation of permeabilized cells

Preparation of permeabilized cells was performed as in [4]. Thymocytes obtained from mouse thymuses were incubated in medium mimicking intracellular ionic conditions and consisting of 140 mM KCl, 10 mM NaCl, 2.5 mM MgCl₂ and 10 mM Hepes-KOH at pH 7.0 (designated internal medium), and were

permeabilized with 0.005% saponin (final) at 37°C for 5 min, followed by washing twice with internal medium. More than 98% of the cells treated by this method were permeable to trypan blue.

2.3. Ca^{2+} flux measurement

Permeabilized cells $(2-4 \times 10^7 \text{ cells/ml})$ were incubated at 37°C in samples of internal medium containing different amounts of EGTA to give the desired free Ca²⁺ concentrations and 3% (w/v) PEG (M_r 6000). Free Ca²⁺ concentration was controlled with EGTA using the stability constants and computer program described by Fabiato and Fabiato [13]. Ca²⁺ uptake and Ca²⁺ release in permeabilized lymphocytes were followed by withdrawing aliquots of 200 μ l from the samples at appropriate time intervals. The reaction mixture was composed of ⁴⁵Ca at 1.25 μ Ci/ml and 1 mM ATP in internal medium. After 10 min, Ca²⁺ release from internal stores was induced by the addition of GTP or IP₃. Samples on the filters were immediately washed three times with 3 ml ice-cold internal medium containing 1 mM LaCl₃. The radioactivity was counted using a liquid scintillation counter.

3. RESULTS AND DISCUSSION

Ca²⁺ uptake into the intracellular calcium storage sites of permeabilized thymocytes reached a plateau within 10 min after addition of ATP and ⁴⁵CaCl₂. These Ca²⁺-loaded cells were tested for Ca²⁺ release from the store site in the presence of GTP, IP₃ or A23187. As shown in fig.1, rapid release of about 60% of the intracellularly stored

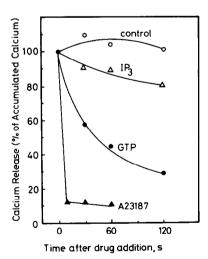


Fig.1. IP₃- and GTP-induced calcium release in permeabilized thymocytes. $[Ca^{2+}]_{free} = 150 \text{ nM}$. Ca^{2+} was incorporated into cells $(4 \times 10^7 \text{ cells/ml})$ for 10 min by 1 mM ATP. Then internal medium (\circ) , 10 μ M GTP (\bullet) , 5 μ M IP₃ (Δ) or 5 μ M A23187 (\triangle) was added. Ca^{2+} accumulated: 23.8 \pm 1.9 pmol/10⁶ cells.

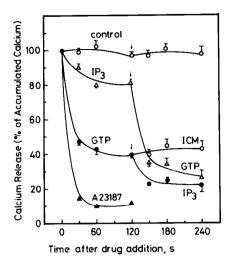


Fig. 2. Correlation between IP₃- and GTP-induced Ca²⁺ release. $[Ca^{2+}]_{free} = 150 \text{ nM}.$ Ca²⁺ was accumulated within the permeabilized cells $(4 \times 10^7 \text{ cells/ml})$ for 10 min by 1 mM ATP. Then internal medium (\circ) , 10 μ M GTP (\bullet) or 5 μ M IP₃ (Δ) was added at zero time. Further internal medium (ICM) (\circ) , or 5 μ M IP₃ (\bullet) and 10 μ M GTP (Δ) were added as indicated. (\triangle) Results on the addition of 5 μ M A23187. Ca²⁺ accumulated: 18.4 \pm 1.5 pmol/10⁶ cells.

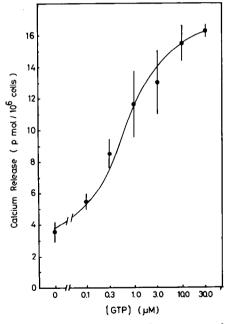


Fig. 3. Dose dependency curve of Ca^{2+} release. $[Ca^{2+}]_{free} = 150$ nM. Calcium was taken up into permeabilized cells (2×10^7 cells/ml) for 10 min in the presence of 1 mM ATP. Varying concentrations of GTP were then added. Ca^{2+} release after 1 min was expressed for 10^6 cells.

 Ca^{2+} was observed immediately after the addition of GTP. However, only about 15% of the releasable Ca^{2+} was released by IP_3 and maximal release was obtained with 5 μ M IP_3 (not shown). The release was not inhibited by oligomycin, antimycin A or ruthenium red, and so the releasable Ca^{2+} was stored in organelles other than the mitochondria. The GTP- and IP_3 -sensitive intracellular Ca^{2+} -storage sites in the thymocytes may be in the endoplasmic reticulum, as reported in relation to other cell systems [4–9]. These results were consistent with those of Eberl and Schnell [12].

Chueh and Gill [6] reported that IP₃ and GTP activated Ca²⁺ release from the endoplasmic reticulum of a neuronal cell line via a distinct mechanism. Therefore, we have also investigated the relationship between IP₃- and GTP-mediated Ca²⁺ release processes in permeabilized thymocytes. We first observed the effects of these substances by sequential addition. When IP₃ was

Table 1

Effect of nucleotides and their derivatives on Ca²⁺ release

	Concentration (µM)	Ca ²⁺ release	Ca ²⁺ release with 10 μM GTP
		(% of accumulated Ca ²⁺)	
Control		0	_
GTP	10	49	-
UTP	100	3	5
CTP	100	7	43
ITP	100	22	34
TTP	100	0	50
GMP	10	0	-
	100	7	
GDP	10	5	
	100	9	-
cGMP	10	10	50
	100	5	-
Guanosine 5'-			
tetraphosphate	100	10	25
$GTP_{\gamma}S$	10	12	5
	100	9	5 5
GMPPNP	100	6	5

Ca²⁺ was incorporated into permeabilized thymocytes in the presence of 1 mM ATP for 15 min. Each concentration of the nucleotides was added and Ca²⁺ release was assessed after 2 min as a percentage of total accumulated calcium. The results in the final column were obtained when 10 μ M GTP was added together with the nucleotides

added 2 min after Ca²⁺ release initiated by GTP, and vice versa, the total amounts of Ca²⁺ released were almost the same. The release was only additive, and no enhancement by GTP or IP₃ of IP₃-or GTP-mediated release (respectively) was observed (fig.2). These results may indicate that these two ligands mediate Ca²⁺ release via different mechanisms.

Calcium release from permeabilized thymocytes is highly sensitive to GTP. Thus, half-maximal release occurred at 0.5 μ M GTP, and maximal release at approx. 10 μ M (fig.3).

Among the nucleotides tested, only ITP induced Ca²⁺ release from thymocytes (table 1).

We next examined the effect of several nucleotides and their derivatives on GTP-mediated Ca^{2+} release in thymocytes, the results being summarized in table 1. As shown, $100 \,\mu\text{M}$ UTP, 10 and $100 \,\mu\text{M}$ GTP γS , and $100 \,\mu\text{M}$ GMPPNP inhibited GTP-mediated Ca^{2+} release.

These results indicate that GTP induced Ca²⁺ release in permeabilized murine thymocytes.

REFERENCES

- [1] Streb, H., Irvine, R.F., Berridge, M.J. and Schulz, I. (1983) Nature 306, 67-69.
- [2] Burgess, G.M., Irvine, R.F., Berridge, M.J., McKinney, J.S. and Putney, J.W. (1984) Biochem. J. 224, 741-746.
- [3] Dawson, A.P. (1985) FEBS Lett. 185, 147-150.
- [4] Ueda, T., Chueh, S.H., Noel, M.W. and Gill, D.L. (1986)J. Biol. Chem. 261, 3184-3192.
- [5] Gill, D.L., Ueda, T., Chueh, S.H. and Noel, M.W. (1986) Nature 320, 461-464.
- [6] Chueh, S.H. and Gill, D.L. (1986) J. Biol. Chem. 261, 13883-13886.
- [7] Henn, V. and Söling, H.D. (1986) FEBS Lett. 202, 267–273.
- [8] Hamachi, T., Hirata, M., Kimura, Y., Ikebe, T., Ishimatsu, T., Yamaguchi, K. and Koga, T. (1987) Biochem. J. 242, 253-260.
- [9] Kiesel, L., LukáLcs, G.L., Eberhardt, I., Runnebaum, B. and Spät, A. (1987) FEBS Lett. 217, 85-88.
- [10] Hesketh, T.R., Smith, G.A., Moor, J.P., Tailor, M.V. and Metcalfe, J.C. (1983) J. Biol. Chem. 258, 4876–4882.
- [11] Hesketh, T.R., Moor, J.P., Morris, D.H., Tailor, M.V., Rogers, J., Smith, G.A. and Metcalfe, J.C. (1985) Nature 313, 481–484.
- [12] Eberl, G. and Schnell, K. (1987) FEBS Lett. 222, 349-352.
- [13] Fabiato, A. and Fabiato, F. (1979) J. Physiol. Paris 75, 463-505.